济宁蓖乒工艺品有限责任公司

當(dāng)前位置:

2013年職稱英語理工類A級考試真題

發(fā)表時間:2014/1/4 11:52:33 來源:互聯(lián)網(wǎng) 點擊關(guān)注微信:關(guān)注中大網(wǎng)校微信
關(guān)注公眾號

本文導(dǎo)航

第2部分:閱讀判斷(第16-22題,每題1分,共7分)

New Understanding of Natural Silk’s Mysteries

Natural silk, as we all know, has a strength that man-made materials have long struggled to match. In a discovery that sounds more like an ancient Chinese proverb than a materials science breakthrough, MIT researchers have discovered that silk gets its strength from its weakness. Or, more specifically, its many weaknesses. Silk gets its extraordinary durability and ductility (柔韌性) from an unusual arrangement of hydrogen bonds that are intrinsically very weak but that work together to create a strong, flexible structure.

To get a better understanding of how silk manages to produce such strength through such weak bonds, the MIT team created a set of computer models that allowed them to observe the way silk behaves at the atomic level. They found that the arrangement of the tiny silk nanocrystals (納米晶體) is such that the hydrogen bonds are able to work cooperatively, reinforcing one another against external forces and failing slowly when they do fail, so as not so allow a sudden fracture to spread across a silk structure.

The result is natural silks that can stretch and bend while retaining a high degree of strength. But while that's all well and good for spiders, bees and the like, this understanding of silk geometry could lead to new materials that are stronger and more ductile than those we can currently manufacture. Our best and strongest materials are generally expensive and difficult to produce (requiring high temperature treatments or energy-intensive processes).

By looking to silk as a model, researchers could potentially devise new manufacturing methods that rely on inexpensive materials and weak bonds to create less rigid, more forgiving materials that are nonetheless stronger than anything currently on offer. And if you thought you were going to get out of this materials science story without hearing about carbon nanotubes (納米碳管), think again.The MIT team is already in the lab looking into ways of synthesizing silk-like structures out of materials that are stronger than natural silk —like carbon nanotubes. Super-silks are on the horizon.

16. MIT researchers carry out the study to illustrate an ancient Chinese proverb.

A. Right B. Wrong C. Not mentioned

17. Silk’s strength comes from its weak hydrogen bonds working together.

A. Right B. Wrong C. Not mentioned

18. Biologists and engineers are interested in understanding natural silks because they are very light and brittle.

A. Right B. Wrong C. Not mentioned

19. If the hydrogen bonds break due to external forces, they break fast.

A. Right B. Wrong C. Not mentioned

20. The MIT team had tried different materials before they studies natural silk in the research.

A. Right B. Wrong C. Not mentioned

21. Carbon nanotubes are currently the most popular topic in materials science.

A. Right B. Wrong C. Not mentioned

22. It is indicated that materials stronger than natural silk can be expected in the future.

A. Right B. Wrong C. Not mentioned

參考答案:BABBCBA

(責(zé)任編輯:vstara)

6頁,當(dāng)前第2頁  第一頁  前一頁  下一頁
最近更新 考試動態(tài) 更多>
南岸区| 顺昌县| 樟树市| 精河县| 丹凤县| 青神县| 桦甸市| 包头市| 湛江市| 保定市| 东平县| 哈巴河县| 察雅县| 海原县| 江源县| 花垣县| 白沙| 遂川县| 东源县| 德格县| 神农架林区| 资兴市| 上蔡县| 阳春市| 荆门市| 慈利县| 鄱阳县| 长海县| 尖扎县| 确山县| 宽甸| 邵阳市| 汤原县| 蕲春县| 军事| 米易县| 于田县| 曲沃县| 英山县| 尤溪县| 云霄县|